
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 28 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713646857

Löwdin correlation energy density of the inhomogeneous electron liquid in
some closed-shell molecules at equilibrium geometry
A. Grassia; G. M. Lombardoa; G. G. N. Angilellab; G. Fortea; N. H. Marchcd; C. Van Alsenoye; R. Puccib

a Dipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Catania, Italy b

Dipartimento di Fisica e Astronomia, Università di Catania and CNISM, UdR Catania, and INFN,
Catania, Italy c Oxford University, Oxford, UK d Department of Physics, University of Antwerp,
Antwerp, Belgium e Department of Chemistry, University of Antwerp, Antwerp, Belgium

To cite this Article Grassi, A. , Lombardo, G. M. , Angilella, G. G. N. , Forte, G. , March, N. H. , Van Alsenoy, C. and Pucci,
R.(2008) 'Löwdin correlation energy density of the inhomogeneous electron liquid in some closed-shell molecules at
equilibrium geometry', Physics and Chemistry of Liquids, 46: 5, 484 — 490
To link to this Article: DOI: 10.1080/00319100701790069
URL: http://dx.doi.org/10.1080/00319100701790069

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713646857
http://dx.doi.org/10.1080/00319100701790069
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Physics and Chemistry of Liquids
Vol. 46, No. 5, October 2008, 484–490

LETTER
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bDipartimento di Fisica e Astronomia, Università di Catania and CNISM, UdR Catania, and
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Using existing theoretical studies, we point out that the dominant variable in
determining Löwdin correlation energies per electron Ec/N of isoelectronic series
of molecules at equilibrium is the total number of electrons. This turns out to
be Ec/N¼�0.033� 0.003 a.u. for CH4, NH3, H2O and HF (N¼ 10), and
Ec/N¼�0.039� 0.007 for some 20 Si-containing molecules in the series
SiXnYm. Following earlier work of March and Wind on atoms, some proposals
are then made as to a possible explanation of such behaviour. A test is proposed,
via low-order Møller–Plesset perturbation theory, as to whether the Löwdin
correlation energy density �c(r) is, albeit approximately, a local functional �c(�) of
the ground-state density for molecules at equilibrium. Such an LDA assumption
would imply that �c(�) is quantitatively linear in �(r), for closed-shell molecules at
equilibrium, at least for the light atomic components treated here. This, in turn
implies that the dominant effect of the Löwdin correlation energy for closed-shell
molecules at equilibrium is merely to shift the chemical potential.

Keywords: correlation energy density; inhomogeneous electron liquid;
closed-shell molecules

1. Introduction

The problem of correlation energy remains central in molecular physics. Here we shall take
the view that in molecules and clusters in equilibrium, which we assume throughout,
exchange is considerably greater than correlation, and therefore we shall assume that the
Hartree–Fock (HF) theory is the appropriate starting point.

As background to the present study, we record first in Table 1 the correlation energies
for electron Ec/N for N¼ 10 taken from [1]. It is clear that for these four molecules the
number of electrons N is the main variable in determining the correlation energy Ec. This
conclusion was reached earlier for light atoms by March and Wind [2].

To emphasise this point, Table 2 records the correlation energies per electron Ec/N
for closed-shell molecules containing Si from our own earlier work [3] (see also [4]). Again,
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we see that Ec/N is rather constant for the range of molecules at equilibrium considered

there. These Tables 1 and 2 have been the prime motivation for re-opening the

Rayleigh–Schrödinger perturbation theory below. First, we present such a theory rather

generally, and then we specialise to the case when the unperturbed solution is as given by

the HF theory.

2. Proposal to test locality of correlation energy density ec(r) for molecules in equilibrium

via low-order Møller–Plesset perturbation theory

Current software yielding the second-order Møller–Plesset (MP2) [5] correlation energy

does not seem to afford the possibility to extract the correlation energy density �c(r) for
molecules at equilibrium.

We have therefore re-opened the approach to Rayleigh–Schrödinger perturbation

theory given by Young and March [6], with earlier relevant references given there.

Young and March were not directly concerned with a perturbation which reflected the
difference H�HHF between the exact Schrödinger Hamiltonian H and the Fock operator

form HHF. One immediate consequence of this choice of perturbation, as stressed by

Møller and Plesset [5], is that the first-order perturbation energy h�HFjH�HHFj�HFi is

identically zero.

Table 2. Correlation energies per electron Ec/N for closed-shell
molecules containing Si, ordered by increasing N [3].

Molecule N Ec/N (a.u.)

SiH2 16 �0.035
SiHF 24 �0.040
SiH3F 26 �0.038
SiF2 32 �0.042
SiHCl 32 �0.037
SiH2F2 34 �0.041
SiH3Cl 34 �0.035
SiHF3 42 �0.042
SiH2FCl 42 �0.038
SiCl2 48 �0.037
SiH2Cl2 50 �0.036
SiHF2Cl 50 �0.040
SiHFCl2 58 �0.038
SiF3Cl 58 �0.041
SiHCl3 66 �0.036
SiF2Cl2 66 �0.039
SiFCl3 74 �0.038

Table 1. Correlation energies per electron, Ec/N (N¼ 10), using many-body
perturbation studies of [1].

Molecule HF H2O NH3 CH4

Ec (a.u.) �0.036 �0.034 �0.032 �0.031
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Of course it may be that this first-order term makes a contribution to �c(r), say �
ð1Þ
c ðrÞ,

but this gives zero contribution to the total correlation energy Ec¼
R
"c(r)dr. Thus, the first

contribution to Ec is �
ð2Þ
c ðrÞ, from the second-order MP correlation energy

Eð2Þc ¼

Z
�ð2Þc ðrÞdr: ð1Þ

We turn therefore, first of all to the rather general Young–March formulation [6] of the
first-order wave function in Rayleigh–Schrödinger perturbation theory, before specialising
to the specific MP form.

Assume the unperturbed Hamiltonian is H0, which we can take to be explicitly HHF, or
as recently proposed by Cabo et al. [7], a modified form HmHF. H0 in either case possesses
a complete orthonormal set of eigenvectors �i given by

ðEi �H0Þ�i ¼ 0: ð2Þ

Let us assume �0 is non-degenerative and focus attention on the calculation of the
corresponding ground-state eigenvalue E and eigenvector  given by

ðE�H0 �H1Þ ¼ 0, ð3Þ

where H1¼H�H0, with H the total Schrödinger Hamiltonian involving the electron–
electron interacation e2/rij.

Then, Young and March [6] write

 ¼
X1
n¼0

Kn�0 ð4Þ

and

E� E0 ¼
X1
n¼0

h�0jVKnj�0i, ð5Þ

where in the Rayleigh–Schrödinger scheme to which we restrict ourselves here, Young and
March note that

K0 ¼ 1, ð6aÞ

K1 ¼
1� P

E0 �H0
V, ð6bÞ

K2 ¼
1� P

E0 �H0
V

� �2

�h�0jVj�0i
1� P

E0 �H0

� �2

V, ð6cÞ

. . . ð6dÞ

where P is the projection operator defined by

P�n ¼ �n�n0: ð7Þ

When H0 is either HHF or HmHF, the first-order perturbation energy is identically zero.
Thus, we need the first-order wave function from Equation (4), which leads one to
encounter an expression of the type

1� P

E�H0
V�0 ¼ ð1� PÞ

1

��H0
v�0, ð8Þ
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where v¼V�h�0jVj�0i. Young and March note that the crucial step in the evaluation of

Equation (8) is to find a suitable function f such that

1

��H0
v�0 ¼ f�0: ð9Þ

Taking the case H0 ¼ �
1
2

P
i r

2
i þU, Equation (9) gives

ð�� E0Þfþ
X
i

ri f �
ri�0
�0
þ
1

2

X
i

r2
i f ¼ v: ð10Þ

In the Rayleigh–Schrödinger form under discussion, �¼E0, Young and March note

that in the one-particle case the method is equivalent to that introduced by Dalgarno and

Lewis [8]. With this general background, we next specialise to the MP case.

2.1. Correlation energy density �c(r) within low-order MP perturbation theory

According to the general definition of Löwdin [9–11], the correlation energy or level shift

Ec is defined as the difference between the exact and the HF ground-state energy,

Ec¼E�E0.
Above we noted that the total non-relativistic Hamiltonian H is a sum of an

unperturbed part H0 and a perturbation H1. In this section, we specialise the perturbation

theory outlined above by choosing H0 to be the HF Hamiltonian. Then we immediately

have

H0�0 ¼ E0�0, ð11Þ

where E0 is now the HF ground-state energy and �0 the corresponding (real)

eigenfunction. Similarly, the exact Schrödinger equation reads for the ground state

H� ¼ E�: ð12Þ

Multiplying Equation (11) on the left by � and integrating over all electronic coordinates,

we have Z
�H0�0 d� ¼ E0

Z
��0 d�, ð13Þ

where d�¼dr1dr2 � � � drN. Similarly, by multiplication of Equation (12) by �0 and again

integration over all electronic coordinates yieldsZ
�0H� d� ¼ E

Z
�0�d�: ð14Þ

Thus, from Equations (13) and (14), see e.g. [12], we have the Löwdin correlation energy in

the form

Ec ¼
h�0jHj�i � h�jH0j�0i

h�0j�i

¼

R
�0H� d� �

R
�H0�0d�R

�0� d�
: ð15Þ
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It would be therefore natural to define a correlation energy density by omitting one

integration as

�cðrÞ ¼

R
�0H� d�0 �

R
�H0�0 d�

0R
�0� d�

, ð16Þ

where now d�0 ¼ dr2 � � � drN and r� r1, so that

Ec ¼

Z
�cðrÞdr: ð17Þ

Following now Møller and Plesset [5], we assume the perturbation expansion

� ¼ B �0 þ
X
rs;��

að1Þrs;���
0
rs;��

" #
, ð18Þ

where að1Þrs;�� are the coefficents in the MP perturbation expansion, �0
rs;�� are the

(orthonormal) HF excited states and B is a normalisation factor, which turns out to be

B ¼ 1þ
X
rs;��

jars;��j
2

" #�1=2
: ð19Þ

Substitution of Equation (18) into Equation (16) then yields

�cðrÞ ¼ ðE� E0Þ
1

N
�HFðrÞ þ

X
rs;��

að1Þrs;��

Z
�0�

0
rs;�� d�

0

" #
, ð20Þ

where �HF(r) is the HF density, and the remaining integrals are related to the off-diagonal

elements of a HF transition-like matrix.
What must now be emphasised is that Equation (17) makes clear that �c(r) is not

unique, since any function f(r) can be added to �c(r) provided f(r) satisfies the sum ruleZ
f ðrÞdr ¼ 0: ð21Þ

But the orthonormality of the HF wave functions �0 and �0
rs;�� means that the last term in

Equation (20) already satisfies this sum rule. Hence, we can redefine �c(r), denoting the

new definition by �MP
c ðrÞ as

�MP
c ðrÞ ¼

Ec

N
�HFðrÞ: ð22Þ

Since we know from the MP theory that �HF(r) is a good electron density, in the sense

that it is accurate to second–order in the difference between the exact Hamiltonian and the

Fock operator, we propose the semi-empirical (emp) generalisation of Equation (22) to

read

�emp
c ðrÞ ¼

Ec

N
�ðrÞ, ð23Þ

where �(r) is now the exact ground-state density, while likewise Ec/N is the exact Löwdin

correlation energy. Of course, Equation (23) becomes a trivial identity when integrated
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over r, since
R
�(r)dr¼N, where N is the total number of electrons in the molecule or

cluster under investigation.

2.2. Semiempirical proposal for correlation energy density for molecules
and clusters at equilibrium

Returning to the two series of molecules considered in the previous section, we could write
for these the approximate formula, but now specifically at the equilibrium molecular
geometry:

�emp
c ðrÞ ¼ ð�0:034� 0:003Þ�ðrÞ: ð24Þ

What seems then remarkable to us is that the correlation energy per electron can be
determined at any point r in the molecule or cluster, without recourse to volume
integration. Thus, the present discussion leads us to the concept of a ‘local’ Löwdin
correlation energy density. For sufficiently large distances r from all nuclei in molecules
and finite clusters, the ground-state density is known to have the asymptotic form

�ðrÞ ¼ Arn expð�2
ffiffiffiffiffi
2I
p

rÞ, ð25Þ

where I is the ionisation potential in astronomical units. The semi-empirical proposal,
Equation (24), obviously then has the consequence that �emp

c ðrÞ falls off exponentially at
a rate governed by the ionisation potential, to be compared with the Dirac exchange
energy density, which, again far from nuclei, has the asymptotic form [13]

�xðrÞ ¼ �
1

2

e2

r
�ðrÞ: ð26Þ

3. Summary and future directions

We have here first noted that the correlation energy per electron for two series of
molecules at equilibrium recorded in Tables 1 and 2 accord with the empirical relation for
the correlation energy density given in Equation (24). We have contrasted the large r
behaviour of this empirical form, Equation (24), with that for the exchange energy density
in Equation (26).

For the future, it will be important to attempt the construction of analytical (at first
atomic) models which will allow the level-shift formula embodied in Equation (16) to be
explored further within an exact, if over-simplified framework. However, the present
results suggest, from Equation (24), that the main change due to correlation is to cause
a shift in the chemical potential.
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